博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ1743---Musical Theme(+后缀数组二分法)
阅读量:5047 次
发布时间:2019-06-12

本文共 4543 字,大约阅读时间需要 15 分钟。

Description

A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings.
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:

is at least five notes longappears (potentially transposed -- see below) again somewhere else in the piece of musicis disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every note value in the theme subsequence.

Given a melody, compute the length (number of notes) of the longest theme.
One second time limit for this problem’s solutions!

Input

The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes.
The last test case is followed by one zero.

Output

For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0.

Sample Input

30

25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18
82 78 74 70 66 67 64 60 65 80
0

Sample Output

5

Hint

Use scanf instead of cin to reduce the read time.

Source

LouTiancheng@POJ

求最长不可重叠子串。能够后缀数组+二分解决

先把输入的数字前后两两做差,然后建立后缀数组。二分就可以

/*************************************************************************    > File Name: POJ1743.cpp    > Author: ALex    > Mail: zchao1995@gmail.com     > Created Time: 2015年03月31日 星期二 15时43分29秒 ************************************************************************/#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;const double pi = acos(-1.0);const int inf = 0x3f3f3f3f;const double eps = 1e-15;typedef long long LL;typedef pair
PLL;class SuffixArray{ public: static const int N = 20010; int init[N]; int X[N]; int Y[N]; int Rank[N]; int sa[N]; int height[N]; int buc[N]; int size; void clear() { size = 0; } void insert(int n) { init[size++] = n; } bool cmp(int *r, int a, int b, int l) { return (r[a] == r[b] && r[a + l] == r[b + l]); } void getsa(int m = 256) { init[size] = 0; int l, p, *x = X, *y = Y, n = size + 1; for (int i = 0; i < m; ++i) { buc[i] = 0; } for (int i = 0; i < n; ++i) { buc[x[i] = init[i]]++; } for (int i = 1; i < m; ++i) { buc[i] += buc[i - 1]; } for (int i = n - 1; i >= 0; --i) { sa[--buc[x[i]]] = i; } for (l = 1, p = 1; l <= n; m = p, l *= 2) { p = 0; for (int i = n - l; i < n; ++i) { y[p++] = i; } for (int i = 0; i < n; ++i) { if (sa[i] >= l) { y[p++] = sa[i] - l; } } for (int i = 0; i < m; ++i) { buc[i] = 0; } for (int i = 0; i < n; ++i) { ++buc[x[y[i]]]; } for (int i = 1; i < m; ++i) { buc[i] += buc[i - 1]; } for (int i = n - 1; i >= 0; --i) { sa[--buc[x[y[i]]]] = y[i]; } int i; for (swap(x, y), x[sa[0]] = 0, p = 1, i = 1; i < n; ++i) { x[sa[i]] = cmp(y, sa[i - 1], sa[i], l) ?

p - 1 : p++; } if (p >= n) { break; } } } void getheight() { int h = 0; for (int i = 0; i <= size; ++i) { Rank[sa[i]] = i; } height[0] = 0; for (int i = 0; i < size; ++i) { if (h > 0) { --h; } int j = sa[Rank[i] - 1]; for (; i + h < size && j + h < size && init[i + h] == init[j + h]; ++h); height[Rank[i] - 1] = h; } } bool judge(int k) { int maxs = sa[1], mins = sa[1]; for (int i = 1; i < size; ++i) { if (height[i] < k) { maxs = mins = sa[i + 1]; } else { maxs = max(maxs, sa[i + 1]); mins = min(mins, sa[i + 1]); if (maxs - mins > k) { return 1; } } } return 0; } void solve() { int l = 1, r = size; int mid; int ans = 0; while (l <= r) { int mid = (l + r) >> 1; if (judge(mid)) { l = mid + 1; ans = mid; } else { r = mid - 1; } } ++ans; printf("%d\n", ans >= 5 ? ans : 0); } }SA; int val[20010]; int main() { int n; while (~scanf("%d", &n), n) { SA.clear(); for (int i = 1; i <= n; ++i) { scanf("%d", &val[i]); } for (int i = n; i >= 2; --i) { val[i] = val[i] - val[i - 1] + 90; } for (int i = 2; i <= n; ++i) { SA.insert(val[i]); } SA.getsa(); SA.getheight(); SA.solve(); } return 0; }

版权声明:本文博客原创文章。博客,未经同意,不得转载。

转载于:https://www.cnblogs.com/zfyouxi/p/4755408.html

你可能感兴趣的文章
看看 Delphi XE2 为 VCL 提供的 14 种样式
查看>>
Python内置函数(29)——help
查看>>
机器学习系列-tensorflow-01-急切执行API
查看>>
SqlServer 遍历修改字段长度
查看>>
Eclipse快捷键:同时显示两个一模一样的代码窗口
查看>>
《架构之美》阅读笔记05
查看>>
《大道至简》读后感——论沟通的重要性
查看>>
JDBC基础篇(MYSQL)——使用statement执行DQL语句(select)
查看>>
关于React中props与state的一知半解
查看>>
java中Hashtable和HashMap的区别(转)
查看>>
关闭数据库
查看>>
webStrom智能提示忽略首字母大小写问题
查看>>
层叠加的五条叠加法则(一)
查看>>
设计模式六大原则(5):迪米特法则
查看>>
对Feature的操作插入添加删除
查看>>
javascript String
查看>>
ecshop 系统信息在哪个页面
查看>>
【转】码云source tree 提交超过100m 为什么大文件推不上去
查看>>
Oracle数据库的增、删、改、查
查看>>
MySql执行分析
查看>>